

Composition and Hydration of Roman (*Natural*) Cements

Christophe Gosselin

Laboratory of Construction Materials (*)

Ecole Polytechnique Fédérale de Lausanne

(*) now at Geotest, Lausanne

Natural cements in European cultural heritage Les ciments naturels dans le patrimoine européen PARIS – 26/27-04-2012

Introduction

- Previous lecture on the different facilities of production of Roman cement
- What can be the composition of these cements?
- How do they hydrate?

- Calcination of marlstone to produce cement is a complex process
- Involving the raw materials (minerals) and the kiln parameters (residence time, max. temp., quenching...)

Marlstone Quarry (Austria)

Crushed Marlstones

- Calcination of marlstone to produce cement is a complex process
- Involving the raw materials (minerals) and the kiln parameters (residence time, max. temp., quenching...)

Crushed Marlstones

<u>Limestone + 25-35%wt clay minerals</u>

- Calcite CaCO₃/ dolomite CaMg(CO₃)₂
- Quartz SiO₂
- Clay materials Al₂O₃, SiO₂, Fe₂O₃, Na₂O, K₂O
- If iron sulfur minerals (FeS₂, FeS…)→ SO₃

Calcination (1/3)

From 650°C, CaCO₃ will release CaO and CO₂

React very quickly with water → flash setting (no workability)

Calcination (2/3)

From 650°C, CaCO₃ will release CaO and CO₂

2CaO.SiO₂

(C₂S, under two crystal structures α ' and β , so-called belite)

2CaO.Al₂O₃.SiO₂ (C₂AS, gehlenite)

carbonated C₂S

Reactivity with water:

Carbonated $C_2S < C_2AS < \beta - C_2S < \alpha' - C_2S$

Calcination (3/3)

Sometimes under-burnt materials

...... burnt and over-burnt part of the calcined stones are ground all together

In the real life

Shut up !

 α ' or β – C_2 S ?!

Image: Demonstration Site, Chateau Valère, Sion, CH

4 cements

 Cement from a historic Austrian marl Lilienfeld – reference cement fired under laboratory conditions

Semi-Industrial MBM-Gartenau, Poland – pilot rotary kiln

Industrial Vicat Prompt, France – shaft kilns

• Industrial Wittersdorfer & Peggauer, Austria - a rotary kiln

2/ Composition of Roman cements XRD crystalline composition

	Lilienfeld ~860°C	MBM-Gartenau 870 → 970°C	Vicat Prompt 600→1200°C (*)	Wittersdofer & Peggauer 800→1000°C
Total belite $\alpha' + \beta - C_2S$	48	47	44 But C ₃ S (also)	23
$\frac{\text{Ratio}}{\alpha' / \beta} \text{ C}_2 \text{S}$	6	0.6	0.3	0.35
<u>Carbonated</u> <u>C₂S</u>	6.9	16.5	15.2	7.1
Remaining raw materials (calcite,	34.6	18.9 (*) Vicat ceme	17.6	35.1
quartz. clay)		(*) Vicat cement differs because contains C ₃ S and gypsum		

- Composition of cements produced in a traditional kiln
- Four samples from the same calcination batch

Shaft kiln in Mauerbach, (Austria)

mica)

Summary

- A wide range of crystalline composition is obtained
- → due to the raw materials, the calcination parameters...
- The α' - C_2S polymorphism dominates but the relative amount of α' - C_2S and β - C_2S is changing with the calcination conditions
- → Influence on the hydration and strength development
- The carbonation of calcium silicate can occur (depends on the type of kiln and local reduction conditions)
- \rightarrow Less C₂S is available for hydration

How do ...

... Roman cements ...

... hydrate?

Minutes

- Early age
- Very rapid reaction
- Enough strength

 (i.e. for precast, or render)

First day \rightarrow ...

 Hydration reactions slow down

First month → years ...

- Later age
- Hydration of C₂S (controlled by the type of polymorph, moisture conditions...)

SOUR COMAN CEMENT

Early age hydration

Early age hydration products

In cements containing sulfate and carbonate (Vicat)

Early age hydration products

In cements containing no sulfate but carbonate (Lilienfeld, Wittersdorfer & Peggauer)

Phase containing CO₃ (solid solution)

Early age hydration products

In cements containing no sulfate nor carbonate (one VFB and one prototype W&P cement)

Other phases than Hemi- and Monocarboaluminate are formed

→ Usual phases in other cementitious systems, but rarely reported in Roman Cements

Concluding remarks (1/3)

- Roman cements are unique materials (cement chemistry and mortars properties)
- The mechanical and transport properties of mortars result from the rapid development of a complex microstructure
- Vicat remains a specific cement because contains C₃S and gypsum

Concluding remarks (2/3)

- The nature of the first hydration products depends on the presence of carbonate and/or sulfate in the cement
- The assemblage made of CaO-Al₂O₃-CO₃-H₂O
 is identified in mostly all Rocare RCs
- Regardless of their nature, these first products are stable for several years

Concluding remarks (3/3)

- Later, C₂S hydrate to fill the microstructure up after few days/weeks with other products (C-S-H, CH...) → strength increase
- •But the relative reactivity of C_2S strongly depends on the type (α ' or β) and the possible carbonation in the kiln, reducing their availability

For additional information see www.rocare.eu

If you have any questions contact me at christ.gosselin@gmail.com